skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Niu, Tianye"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Objective. This study proposes and evaluates a new figure of merit (FOMn) for dose optimization of Dual-energy cone-beam CT (DE-CBCT) scanning protocols based on size-dependent modeling of radiation dose and multi-scale image quality.Approach. FOMn was defined using Z-score normalization and was proportional to the dose efficiency providing better multi-scale image quality, including comprehensive contrast-to-noise ratio (CCNR) and electron density (CED) for CatPhan604 inserts of various materials. Acrylic annuluses were combined with CatPhan604 to create four phantom sizes (diameters of the long axis are 200 mm, 270 mm, 350 mm, and 380 mm, respectively). DE-CBCT was decomposed using image-domain iterative methods based on Varian kV-CBCT images acquired using 25 protocols (100 kVp and 140 kVp combined with 5 tube currents).Main results. The accuracy of CED was approximately 1% for all protocols, but degraded monotonically with the increased phantom sizes. Combinations of lower voltage + higher current and higher voltage + lower current were optimal protocols balancing CCNR and dose. The most dose-efficient protocols for CED and CCNR were inconsistent, underlining the necessity of including multi-scale image quality in the evaluation and optimization of DE-CBCT. Pediatric and adult anthropomorphic phantom tests confirmed dose-efficiency of FOMn-recommended protocols.Significance. FOMn is a comprehensive metric that collectively evaluates radiation dose and multi-scale image quality for DE-CBCT. The models and data can also serve as lookup tables, suggesting personalized dose-efficient protocols for specific clinical imaging purposes. 
    more » « less
  2. Abstract Purpose. This study aims to develop and validate a multi-view learning method by the combination of primary tumor radiomics and lymph node (LN) radiomics for the preoperative prediction of LN status in gastric cancer (GC). Methods. A total of 170 contrast-enhanced abdominal CT images from GC patients were enrolled in this retrospective study. After data preprocessing, two-step feature selection approach including Pearson correlation analysis and supervised feature selection method based on test-time budget (FSBudget) was performed to remove redundance of tumor and LN radiomics features respectively. Two types of discriminative features were then learned by an unsupervised multi-view partial least squares (UMvPLS) for a latent common space on which a logistic regression classifier is trained. Five repeated random hold-out experiments were employed. Results. On 20-dimensional latent common space, area under receiver operating characteristic curve (AUC), precision, accuracy, recall and F1-score are 0.9531 ± 0.0183, 0.9260 ± 0.0184, 0.9136 ± 0.0174, 0.9468 ± 0.0106 and 0.9362 ± 0.0125 for the training cohort respectively, and 0.8984 ± 0.0536, 0.8671 ± 0.0489, 0.8500 ± 0.0599, 0.9118 ± 0.0550 and 0.8882 ± 0.0440 for the validation cohort respectively (reported as mean ± standard deviation). It shows a better discrimination capability than single-view methods, our previous method, and eight baseline methods. When the dimension was reduced to 2, the model not only has effective prediction performance, but also is convenient for data visualization. Conclusions. Our proposed method by integrating radiomics features of primary tumor and LN can be helpful in predicting lymph node metastasis in patients of GC. It shows multi-view learning has great potential for guiding the prognosis and treatment decision-making in GC. 
    more » « less
  3. null (Ed.)